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ABSTRACT. The primary objective of this work is to find control inputs that enable robots, in our case unmanned aerial
vehicles, to reach a goal state while safely avoiding obstacles. We used sample-based methods including RRT and RRT∗

in combination with Linear Quadratic Regulator(LQR) to generate minimum snap trajectories and Reinforcement Learning
based method Q-learning in combination with a proportional-integral-derivative(PID) controller to acquire valid collision-free
trajectories.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) are widely used as platforms to work in various environments due to their high
maneuver capabilities. Motion planning is one of the most fundamental and essential functionalities that enable UAVs
to complete tasks while safely avoiding obstacles. We implemented both sample-based methods and reinforcement
learning methods in different type of 3D static environments. We compared the performance of these two approaches in
terms of successful rate, time efficiency, and free of collisions.

1.1. Contributions. In this work, we followed [1, 2] to develop the motor model and develop nonlinear controllers.
We implemented RRT in [3], RRT∗ in [4] as sample-based approaches with LQR Minimum snap method in [1] for
trajectory optimization. We used different time estimation for each polynomial segments as we estimated a constant
absolute acceleration value, while in the original work the author assumed constant velocity and improved upon this
guess with several iterations. Q-learning as RL approach in [2, 5] to find the optimal policy with PID controller for
position control to overcome the nonlinear dynamics of quadrotors. We at the end compared the performance in 3D
static environments with the same obstacle sparsity. Both achieved good results, able to reach the goal in reasonable
amount of time.

2. RELATED WORKS

Traditional motion planning is composed of discrete path planning and continuous trajectory optimization [6]. A
collision free path is carried out in the path planning stage. Sample-based method [7] randomly sample valid robot
configurations and form a graph of valid motions. Two representative methods are Probabilistic Road-Map (PRM) and
Rapidly-Exploring Random Tree (RRT). Asymptotically optimal sampling-based methods like RRT∗, PRM∗ and RRG
are guaranteed to converge to global optimal as the samples increase.

At trajectory optimization stage, discrete waypoints are converted into a continuous trajectory which should be
dynamically feasible for the quadrotor at every time instant in the trajectory. The goal of trajectory generation is to
compute the trajectory that passes within a minimum tolerance of all the waypoints without colliding with any of the
obstacles in the environment, while at the same time minimizing the run time cost for the quadrotor to take the path.
This is particularly difficult due to the high degrees of freedom and non-linear dynamics of the UAVs. Methods like
Minimum-energy [8], Minimum-jerk [9], Minimum-snap [1] have been applied to tackle this issue.

In recent years, reinforcement learning has been a hotspot for planning as it does not rely on the prior structured map
and achieves the unification of the global planner and the local planner [10]. Yet it’s still an open area for research in
terms of its challenges. In [11], an experimental study is done on a UAV using reinforcement learning algorithms of
two categories: discrete action space and continuous action space. In discrete action space, the agent decides to follow
a policy in the form of greedy learning through choosing the optimum action given state value. This approach has
been achieved by algorithms based on deep Q-Network (DQN) [12, 13], Double DQN [14] and Double Dueling DQN
(D3QN) [15]. The continuous action space learning expresses actions as a single-value vector and has been achieved
by algorithms including Trust Region Policy Optimization (TRPO) [16] and Deep Deterministic Policy Gradient
(DDPG) [17]. However, we noticed that a lot of the papers did not provide thorough details on the practical aspects of
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implementation and lacked experiment in simulation. We hoped to fill in the gap by providing a framework for applying
a RL algorithm to enable UAVs to operate in an unknown environment.

3. APPROACH

3.1. Rapidly-Exploring Random Trees(RRT) and RRT∗. Rapidly-Exploring Random Tree, proposed by [3], is one
of the most famous sample-based methods, which makes planning by sampling the configuration space(C-space). As
a single-query planner, RRT builds a tree from the start configuration to the goal configuration rather than building
a Roadmap for the whole C-space [18]. The general idea of RRT is discribed as follows. It first chooses the start
configuration as the root of the tree and gets a random sample in the configuration space, then connects that sample
as the new state into the tree if there is no collision between the sample and the nearest vertex in the tree, and finally
repeats the sampling and connecting process until it finds the sample is the exact goal configuration. Using the parent
pointer, it can quickly back-search from goal configuration to start configuration, and then there is a collision-free path.
Detailed explanation with pseudo codes of RRT can be found in Appendix A.

Due to the nature of random tree sampling, RRT usually suffers from local minimum and returns a sub-optimal path
rather than an optimal path. Therefore, to mitigate this drawback, the RRT∗, proposed in [4] adds a cost function to
compute the minimum cost-to-go for each node point, rearranging nodes based on the cost. In other words, it recorded
the distance each vertex has traveled relative to its parent vertex, and after the closest node is found in the graph, a
neighborhood of vertices in a fixed radius from the new node are examined. If a node with a cheaper cost than the
proximal node is found, the cheaper node replaces the proximal node. Another distinction of RRT∗ is that it constantly
rewriting the trajectory of the the tree. Neighbors are checked if being rewired to the newly added vertex will make
their cost decrease. If the cost does indeed decrease, the neighbor is rewired to the newly added vertex. This feature
makes the path more smooth. Pseudo code with explanation is shown in Appendix B.

3.2. Linear Quadratic Programming(LQR) Minimum Snap. In [1], the author proposed a method to smooth the
transitions between waypoints using piece-wise polynomial functions. They considered each pair of waypoints as
endpoints of a trajectory subject to polynomial constraints and solve for the coefficients of N polynomials where N is
the number of waypoints - 1, with d = 8 terms in each polynomial and 7th order polynomial for the position. This can
be easily formulated as an optimization problem in the matrix form shown in (1) where the cost function is the integral
of the square of the norm of the jerk as G and h, A and b is the constraints that assuming the quadrotor are moving in
the absolute acceleration constant between waypoint segments. As the objective function and constraints are all linear,
this optimization problem can be solved using LQR.

minimize
1

2
xTHx+ qTx, (1)

s.t. Gx ≤ h,

Ax = b,

3.3. Q-learning. Given that we have a closed environment with no prior information, it is natural to consider using RL
algorithms to generate the optimal path, since they rely only on the data obtained directly from the system. We chose
Q-learning because of its computational efficiency and capability of representing low-dimensional data. We assume the
environment has Markovian property, where the next state and reward only depend on current state. The learning model
can be generalized as a tuple < S,A, T ,R >, where

• S is a finite state list, sk ∈ S is the state of the agent at step k;
• A is a finite set of actions, ak ∈ A is the action that the agent takes at step k;
• T is the transition probability function: S ×A× S → [0, 1]. It’s the probability that the agent takes action ak

to move from state sk to state sk+1;
• R is the reward function: S ×A specifies the immediate reward that the agent gets if transitioning from state
sk to state sk+1 by taking action ak. We have R(sk, ak) = rk+1.

The objective of the agent is to find the optimal policy that maximizes the total amount of reward. In each state, the
Q function Q(sk, ak) can be used for the agent to determine how good it is to take an action. The agent iteratively
computes the optimal Q-function and records them into Q-table. The agent later recalls this knowledge to decide which
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action to take in order to optimize its rewards over the learning episodes. In each iteration, the Q function is updated
using the Bellman equation

Qk+1(sk, ak)← (1− α)Qk(sk, ak) + α[rk+1 + γmax
a′

Qk(sk+1, a
′)]

where 0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1 are the learning rate and discount factor. To maintain a balance between exploration
and exploitation, we incorporated ϵ-greedy policy as follows:

π(s) =

a random action a, with probability ϵ

a ∈ argmax
a′

Qk(sk, a
′), otherwise

In order to use Q-learning algorithm, we defined the proper set of states S, actions A and rewards R. We consider
the environment as a finite set of spheres with equal radius d and their centers represent the discrete location. The state
of an UAV is their position in the environment, sk = [xc, yc, zc] where xc, yc, zc are the coordinates of the center of a
sphere c at time step k. In each state, the UAV can take an action ak from a set of four possible actions: North, South,
East, West while maintaining the same attitude. The agent gets a reward of -1 for control, -10 if it goes out of bound
and 100 if it reaches the goal.

3.4. PID-Controller. A PID controller was designed to ensure stable hovering and navigation towards the target.
Based on its current state and its learning model, the drone decides the action to the next state. This PID controller
controls the motors of the drone to generate thrust force to drive it to the desired position as the following,

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de

dt

where u(t) is the control input, e(t) is the tracking error between real-time state s(t) and desired state sk+1, Kp is the
proportional control gain, Ki the integral control gain and Kd the derivative control gain. In general, the derivative term
can decrease the overshoot while the integral term can decrease the steady-state error but may cause larger overshoot.
We tuned the control parameters in order to obtain a stable trajectory.

Algorithm 1 Q-Learning and PID Control

Require: Learning parameters: γ, α,N
Require: Control parameters: Kp,Ki,Kd

Require: Goal state: G
Initialize Q0(s, a)← 0,∀s0 ∈ S,∀a0 ∈ A
for episode = 1 : N do

Measure initial state s0
for k = 0, 1, 2, ... do

Choose ak from A
Take action ak that leads to the new state sk+1

for t = 0, 1, 2, ... do
u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de
dt

end for
until ∥s(t)− sk+1∥ ≤ d
Observe reward rk+1

Update: Qk+1(sk, ak)← (1− α)Qk(sk, ak) + α[rk+1 + γmax
a′

Qk(sk+1, a
′)]

end for
Until sk+1 = G

end for=0

4. EXPERIMENTAL RESULTS

4.1. Comparison between RRT and RRT∗. Since the main difference between RRT and RRT∗ is that RRT∗ finds
the current optimal path, we try to represent that advantage based on the environment we set. The waypoints generated
by RRT and RRT∗ are described by Figure 1. As we can see, the connection of waypoints generated by RRT is more
squiggling than waypoints generated by RRT∗, which represents that the path generated by RRT is not the current
optimal. Opposed to that, it is obvious that the path generated by RRT∗ is more straight and it is optimal since there is
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FIGURE 1. The waypoints generated by RRT and RRT∗: (i) the left one is generated by RRT. The
red trajectory is the final path, while all the blue trajectories are the attempted random tree; (ii) the
right one is generated by RRT∗. Same as RRT, the red curve is the final trajectory, and blue are the
attemptions RRT∗ took.

no better waypoint, given the current tree. Thus, the RRT∗ waypoints are better than RRT when we talk about the path,
even though the time spent by RRT star is more than RRT, since RRT∗ needs to rewire the whole tree based on the cost.

The trajectories generated by RRT and RRT∗, with Minimum snap, is shown in Figure 2. As we can see, considering

FIGURE 2. The trajectories generated by Minimum snap using the waypoints of RRT and RRT∗.The
blue curve is the optimized path after Minimum snap, and the red path is the actual trajectory
cooperating with the dynamic of the quadrotor model. (i) the left one is using waypoints of RRT; (ii)
the right one is using waypoints of RRT.

RRT trajectory, even though the Minimum snap mitigates some of the squiggling curves, the problem still exists. When
it comes to RRT star trajectory, it is much more straightforward since the given waypoints are better compared to
waypoints generated RRT, and therefore it is more optimal than RRT trajectory, given the same Minimum snap method.

4.2. Q-learning. We simulated the Q-learning based navigation is ROS Gazebo with an ARDrone model using
ardrone autonomy. The state space is a discretized 5 by 5 grid with a goal position at (5,5). We used learning
rate α = 0.8, discount factor γ = 0.9 and ϵ-greedy factor ϵ = 0.1. For the PID controller, we set the proportional
gain Kp = 0.8, derivative gain Kd = 0.9 and integral gain Ki = 0.1. It took 34 episodes to train the UAV to find the
optimal policy and reach the goal in 8 steps.
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FIGURE 3. Simulation environment in ROS Gazebo.

5. DISCUSSION

5.1. Results. We have presented two parallel approaches for autonomous UAV navigation. Our experimental results
indicate that both the sample-based and reinforcement learning based approach have the capability to produce reasonable
performance regarding speed, smoothness and obstacle avoidance. Our RRT-based algorithm takes about 144.5 seconds
and RRT-star-based algorithm takes about 91.33 seconds to generate smooth paths, while the Q-learning algorithm
takes about 600 seconds to find the optimal path. This is a reasonable running time for static environments where the
planning can be done offline.

5.2. Future Works. Currently, the trajectory planner sometimes samples points that are closer to the obstacles. While
this might work in simulation, it may cause collision in reality when taking noise into consideration. In addition, it is
necessary to investigate the hindrances for apply our method to larger maps, avoiding small-scale decision alternation
through of macro-actions. For our Q-learning planner, an important future work is to extend the setting to 3D, namely
to incorporate attitude planning and control. This potentially will require using the aforementioned advanced algorithms
in 2 since Q-learning will not be suitable for high-dimensional complex states. In addition, we are currently using a
simple world in Gazebo and it is valuable to extend the setting to more complicated environments and at the same time
keep up with the rapid trajectory planning.
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APPENDIX A. RRT ALGORITHM

In the Algorithm 2, SampleFree() returns the random sample in configuration space. Nearest() returns the nearest
vertex in tree G by comparing the Euclidian distance between x rand and all vertices in G. CollisionFree(v, u)
returns a true if there is no obstacle between v and u. Steer(xnearest, xrand, step size) returns the point that a step
towards xrand from xnearest with step size step size.

Algorithm 2 RRT

Require: xinit, xgoal ∈ C,max samples ∈ Z+, step size ∈ R
Ensure: G = (V,E)
V ← {xinit}
E ← ∅
for i = 1, . . . ,max samples do
xrand ← SampleFree()
xnearest ← Nearest(G = (V,E), xrand)
xnew ← Steer(xnearest, xrand, step size)
if CollisionFree(xnearest, xnew) then
V ← V ∪ {xnew}
E ← E ∪ {(xnearest, xnew)}
if xnew is xgoal then

Break
end if

end if
end for=0

APPENDIX B. RRT∗ ALGORITHM

In the Algorithm 3, Line(x1, x2) denote a straight line from x1 to x2. Given Tree G = (V,E), let Parent(v)
be the function that maps a vertex v ∈ V to a unique vertex u ∈ V , with convention that Parent(v0) = v0 if
v0 is the root vertex of G. Let Cost(v) be the function that maps a vertex v ∈ V to the cost of the unique path
from the root of the tree to v. Let Near(G = (V,E), xnew, radius) be the function that returns the set of all ver-
tices of G that lays in the circle with center xnew and radius radius. Based on the additive cost function, we have
Cost(v) = Cost(Parent(v)) + c(Line(Parent(v), v)).

https://arxiv.org/abs/2003.10923
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Algorithm 3 RRT∗

Require: xinit, xgoal ∈ C,max samples ∈ Z+, step size ∈ R, radius ∈ R
Ensure: G = (V,E)

V ← {xinit}
E ← ∅
for i = 1, . . . ,max samples do
xrand ← SampleFree()
xnearest ← Nearest(G = (V,E), xrand)
xnew ← Steer(xnearest, xrand, step size)
if CollisionFree(xnearest, xnew) then
Xnear ← Near(G(V,E), xnew, radius)
V ← V ∪ {xnew}
xmin ← xnearest
cmin ← Cost(xnearest) + c(Line(xnearest, xnew))
for all xnear such that xnear ∈ Xnear do

if CollisionFree(xnear, xnew) ∧ Cost(xnear) + c(Line(xnear, xnew)) < cmin then
xmin ← xnear
cmin ← Cost(xnear) + c(Line(xnear, xnew))

end if
E ← E ∪ {(xmin, xnew)}

end for
for all xnear such that xnear ∈ Xnear do

if CollisionFree(xnear, xnew) ∧ cost(xnear) + c(Line(xnear, xnew)) < cmin then
xparent ← Parent(xnear)
E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)}

end if
end for
if xnew is xgoal then

Break
end if

end if
end for=0
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